QP CODE

23CORE11

P.R. GOVERNMENT COLLEGE (AUTONOMOUS), KAKINADA SEM I END EXAMINATIONS JANUARY-2024 I B.SC(MATHS STREAM), SUBJECT: ESSENTIALS&APPLICATIONS

OF MATHS, PHYSICS&CHEMISTRY

DATE &	10.01.2024	REG		MAX	50
SESSION	AN	NO		MARKS	50

Section -I

Answer any three of the following questions.

Must attempt at least one question from each part. Each question carries 10 Marks.

3 X 10 = 30M

Part - A

- 1. Estimate a Unit vector Perpendicular to both $\bar{a}=2\hat{\imath}+\hat{\jmath}-2\hat{k}$ and $\bar{b}=3\hat{\imath}-\hat{\jmath}+\hat{k}$. (BT-1)
- 2. Write a short note on Wave particle duality and Explain Heisenberg Uncertainty Principle.
 (BT 1)
- 3. Explain the following with suitable examples. (BT 1)
 - a) Ionic bond

b) Vander wall forces

Part-B

- 4. Spring has a natural length of 1m. A force of 24 N Stretches the spring to a length of 1.8m (a) Find the force constant k
 (b) How much work will be taken to stretch the spring 2 m beyond its natural length?
 (BT-4)
- 5. What is internet? Explain Applications of the internet. (BT 1)
- 6. Analyze the various applications of Physics in Electronics and Semiconductor Industry.

 (BT-2)

Section-II

Answer any Four of the following questions.

 $4 \times 5 = 20M$

- 7. Estimate the Modulus and the Argument of the complex number $Z = -1 i\sqrt{3}$. (BT-1)
- 8. Evaluate the angle between the vectors $\bar{a} = 2\hat{\imath} 2\hat{\jmath} + \hat{k}$ and $\bar{b} = 3\hat{\imath} + \hat{\jmath} 2\hat{k}$. (BT-3)
- 9. Explain the behavior of Atomic and Nuclear particles. (BT2)
- 10. What is Internet Protocol (IP)? Explain its versions. (BT 1)
- 11. Generalize the principles of Green Chemistry. (BT 2)
- 12. Discuss the application of Chemistry in daily life. (BT 1)
- 13. What is cryptography? What are its fundamental types? (BT 1)

@@@